
$

Security Assessment

Blockzero Labs

July 14th, 2022

secure3.ioSecure3

 BlockzeroLabs Security Assessment

Summary	
3
Overview	
4
Audit Scope	
5
Business Logic Review	
6
Privilege Role Review	
8
Code Assessment Findings	
10
BZL-1: Solidity compiler version is not fixed and consistent across the project	

12
BZL-2: FlashBack.maximumStakeDuration does not count for leap year	
13
BZL-3: FlashBack::constructor() does not validate _stakingTokenAddress	
14
BZL-4: FlashBack::stake() should use the defined state variable instead of
magic value literal address	
15
BZL-5: FlashBack::unstake() does not check transfer() return value	
16
BZL-6: FlashBack::setForfeitRewardAddress() missing event	
17
BZL-7: FlashBack::setRewardRate() missing event	
18
BZL-8: FlashProtocol::constructor() does not validate input parameter address	

19
BZL-9: FlashProtocol::registerStrategy() does not validate input parameter
address	
20
BZL-10: FlashToken::decimals() not set explicitly	
21
BZL-11: UserIncentive::depositReward() does not check transfer() return value	

22
BZL-12: UserIncentive::claimReward() does not check transfer() return value	

23
BZL-13: FlashStrategyAAVEv2::constructor() does not validate input parameter
address	
24
BZL-14: FlashStrategyAAVEv2 is unable to stop or decrease AVVE lending pool
approved amount	
25
BZL-15: FlashStrategyAAVEv2::withdrawYield() ignoring AVVE lending pool
withdraw returned value	
26

CONFIDENTIAL 1

 BlockzeroLabs Security Assessment

 

BZL-16: FlashStrategyAAVEv2::withdrawPrincipal() ignoring AVVE lending pool
withdraw returned value	
27
BZL-17: FlashStrategyAAVEv2::getMaxStakeDuration() comment typo	
28
Disclaimer	 29

CONFIDENTIAL 2

 BlockzeroLabs Security Assessment

Summary

BlockzeroLabs's Flashstake protocol is a novel financial infrastructure that allows users to receive
yield on deposited assets and getting NFT when staking the assets. It also allows the creation of
strategy and associate with a principal token.

This report has been prepared for BlockzeroLabs to identify issues and vulnerabilities in the smart
contract source code of the BlockzeroLabs project. A comprehensive examination with Static Analysis
and Manual Review techniques has been performed.

The examination and auditing scope includes:

• Cross checking contract implementation against functionalities described in the documents and
white paper disclosed by the project owner.

• Contract Privilege Role Review to provide more clarity on smart contract roles and privilege.

• Using static scanner to analyze smart contracts against common known vulnerabilities patterns.

• Verify the code base is compliant with the most up-to-date industry standards and best practices.

• Comprehensive line-by-line manual code review of the entire codebase by industry experts.

The security assessment resulted in findings that are categorized in four severity levels: Informational,
Low, Medium, Critical. For each of the findings we have provided recommendation of a fix or
mitigation for security and best practices.  

CONFIDENTIAL 3

 BlockzeroLabs Security Assessment

Overview
Project Detail

Business Logic Review Summary

Privileged Role Review Summary

Code Vulnerability Review Summary

  

Project Name BlockzeroLabs

Platform & Language Ethereum, Solidity

Codebase https://github.com/BlockzeroLabs/flashv3-contracts

audit commit - 7b6e6b41ef496b516e9ce2ff23bea18b3db27af6

final commit - e0ea75a5457d8cd4b22151cbae051637ff8c8eba

Audit Methodology • Business Logic Understanding and Review

• Privileged Roles Review

• Static Analysis

• Code Review

Total Number of Features Caution Information Verified

9 0 1 8

Total Number of Privileged Roles Caution Information Verified

9 0 0 9

Vulnerability Level Total Reported Acknowleged Fixed Mitigated

Critical 0 0 0 0 0

Medium 5 0 3 2 0

Low 6 0 3 2 1

Informational 6 0 3 3 0

CONFIDENTIAL 4

https://github.com/BlockzeroLabs/flashv3-contracts

 BlockzeroLabs Security Assessment

Audit Scope

File Commit Hash

contracts/FlashBack.sol 7b6e6b41ef496b516e9ce2ff23bea18b3db27af6

contracts/FlashFToken.sol 7b6e6b41ef496b516e9ce2ff23bea18b3db27af6

contracts/FlashFTokenFactory.sol 7b6e6b41ef496b516e9ce2ff23bea18b3db27af6

contracts/FlashNFT.sol 7b6e6b41ef496b516e9ce2ff23bea18b3db27af6

contracts/FlashToken.sol 7b6e6b41ef496b516e9ce2ff23bea18b3db27af6

contracts/interfaces/AAVE/DataTypes.sol 7b6e6b41ef496b516e9ce2ff23bea18b3db27af6

contracts/interfaces/AAVE/IAaveIncentivesController.sol 7b6e6b41ef496b516e9ce2ff23bea18b3db27af6

contracts/interfaces/AAVE/ILendingPool.sol 7b6e6b41ef496b516e9ce2ff23bea18b3db27af6

contracts/interfaces/AAVE/
ILendingPoolAddressesProvider.sol

7b6e6b41ef496b516e9ce2ff23bea18b3db27af6

contracts/interfaces/IERC20C.sol 7b6e6b41ef496b516e9ce2ff23bea18b3db27af6

contracts/interfaces/IFlashFTokenFactory.sol 7b6e6b41ef496b516e9ce2ff23bea18b3db27af6

contracts/interfaces/IFlashNFT.sol 7b6e6b41ef496b516e9ce2ff23bea18b3db27af6

contracts/interfaces/IFlashStrategy.sol 7b6e6b41ef496b516e9ce2ff23bea18b3db27af6

contracts/interfaces/IFlashFToken.sol 7b6e6b41ef496b516e9ce2ff23bea18b3db27af6

contracts/interfaces/IUserIncentive.sol 7b6e6b41ef496b516e9ce2ff23bea18b3db27af6

contracts/FlashProtocol.sol 7b6e6b41ef496b516e9ce2ff23bea18b3db27af6

contracts/UserIncentive.sol 7b6e6b41ef496b516e9ce2ff23bea18b3db27af6

contracts/strategies/FlashStrategyAAVEv2.sol 7b6e6b41ef496b516e9ce2ff23bea18b3db27af6

CONFIDENTIAL 5

 BlockzeroLabs Security Assessment

Business Logic Review

In this section, we asked project team to provide a list of business features of their contracts, our team
verified each feature one by one and provided the verification results below.

How to read the table
1. Left column is from project team, describing their business intent

2. Right column is from auditing team, verifying if the code implementation meets the claimed

business intent

Business Feature Claimed Business Feature Audit Result

Token ERC20 - FlashToken is a ERC20 token ๏ Auditor Evaluation: Verified,

๏ Code Reference: contracts/FlashToken.sol:10

๏ Detail: The Flashstake/FLASH token is ERC20 token

with 150,000,000 total supply.

Token ERC20 - fToken yield-bearing token is

a ERC20 token that can only be created by

owner

๏ Auditor Evaluation: Verified

๏ Code Reference: contracts/FlashFToken.sol:15

๏ Detail: The FlashFToken token is ERC20 token which

can only be minted by the contract owner.

FlashStrategyAAVEv2 - can be used for any

underlying principal token

๏ Auditor Evaluation: Verified,

๏ Code Reference: contracts/strategies/

FlashStrategyAAVEv2.sol:31

๏ Detail: The _principalTokenAddress is passed in the

constructor for the chosen token.

FlashStrategyAAVEv2 - the principle token is

deposited into the lending protocol such as

AAVE

๏ Auditor Evaluation: Informational,

๏ Code Reference: contracts/strategies/

FlashStrategyAAVEv2.sol:55

๏ Detail: The depositPrincipal() internally calls

ILendingPool::deposit() to deposit the amount.

However the address of lendingPoolAddress is

determined during deployment, reader should verify the

final actual address is the AAVE address on Mainnet

CONFIDENTIAL 6

 BlockzeroLabs Security Assessment

FlashStrategyAAVEv2 - user can withdraw

principle token
๏ Auditor Evaluation: Verified,

๏ Code Reference: contracts/strategies/

FlashStrategyAAVEv2.sol:72

๏ Detail: The withdrawPrincipal() internally calls

ILendingPool::withdraw() and

IERC20::safeTransfer() to withdraw the principal

token from LendingPool and transfer the amount back to

msg.sender.

FlashProtocol - when stake the principal

token, fToken is minted

๏ Auditor Evaluation: Verified,

๏ Code Reference: contracts/FlashProtocol.sol:116,120

๏ Detail: The stake() internally calls

IFlashFToken::mint() to mint the fToken to

_fTokensTo address for the lending pool yield

entitlement.

FlashProtocol - staking, minting fTokens and

burning all operations are in one transaction
๏ Auditor Evaluation: Verified,

๏ Code Reference: contracts/FlashProtocol.sol:272

๏ Detail: The flashStake() has stake(), mint() and

burnFToken() in the call stack, which guarantees the

operations are in one transaction.

FlashProtocol - user can unstake the

principal toke

๏ Auditor Evaluation: Verified,

๏ Code Reference: contracts/FlashProtocol.sol:148

๏ Detail: The unstake() function burn the yield bearing

fToken and transfer the principle tokens from strategy to

the user.

FlashProtocol - user can build and register a

new strategies into the FlashProtocol

๏ Auditor Evaluation: Verified,

๏ Code Reference: contracts/FlashProtocol.sol:68

๏ Detail: The registerStrategy() function can register

the strategy address with principal token address. It also

creates the fToken internally with the

IFlashFTokenFactory.

Business Feature Claimed Business Feature Audit Result

CONFIDENTIAL 7

 BlockzeroLabs Security Assessment

Privilege Role Review

In this section, we reviewed all the privileged roles in the contracts. We listed all the findings in the
following table.

How to read the table
1. Left column: privileged role name

2. Middle column: privileged permission of the role

3. Right column: verified code implementation and roles permission by auditing team

Contract Role Privileged Functionalities Audit Review

FlashBack Owner
Address

๏ setForfeitRewardAddress

๏ setRewardRate

๏ Auditor Evaluation: Verified,

๏ Code Reference: contracts/FlashBack.sol

๏ Detail: critical functionalities can only be

called by contract owner

FlashFToken Owner
Address

๏ mint ๏ Auditor Evaluation: Verified

๏ Code Reference: contracts/

FlashFToken.sol

๏ Detail: critical functionalities can only be

called by contract owner

FlashFTokenFactory
Owner Address

๏ createFToken ๏ Auditor Evaluation: Verified,

๏ Code Reference: contracts/

FlashFTokenFactory.sol

๏ Detail: critical functionalities can only be

called by contract owner

FlashNFT Owner
Address

๏ burn

๏ mint

๏ Auditor Evaluation: Verified,

๏ Code Reference: contracts/FlashNFT.sol

๏ Detail: critical functionalities can only be

called by contract owner

CONFIDENTIAL 8

 BlockzeroLabs Security Assessment

FlashProtocol Owner
Address

๏ setMintFeeInfo ๏ Auditor Evaluation: Verified,

๏ Code Reference: contracts/

FlashProtocol.sol

๏ Detail: critical functionalities can only be

called by contract owner

UserIncentive Owner
Address

๏ depositReward

๏ addRewardTokens

๏ setRewardRatio

๏ Auditor Evaluation: Verified,

๏ Code Reference: contracts/

UserIncentive.sol

๏ Detail: critical admin functions can only be

called by contract owner

UserIncentive Strategy
Owner Address

๏ claimReward ๏ Auditor Evaluation: Verified,

๏ Code Reference: contracts/

UserIncentive.sol

๏ Detail: critical admin functions can only be

called by strategy contract owner

FlashStrategyAAVEv2
Owner Address

๏ withdrawERC20

๏ claimAAVEv2Rewards

๏ setUserIncentiveAddress

๏ Auditor Evaluation: Verified,

๏ Code Reference: contracts/strategies/

FlashStrategyAAVEv2.sol

๏ Detail: critical admin functions can only be

called by contract owner

FlashStrategyAAVEv2
Contract Address or
FlashProtocol
Contract Address

๏ depositPrincipal

๏ withdrawPrincipal

๏ setFTokenAddress

๏ Auditor Evaluation: Verified,

๏ Code Reference: contracts/strategies/

FlashStrategyAAVEv2.sol

๏ Detail: critical admin functions can only be

called by contract itself or FlashProtocol

Contract Role Privileged Functionalities Audit Review

CONFIDENTIAL 9

 BlockzeroLabs Security Assessment

Code Assessment Findings

ID Name Category Severity Status

BZL-1 Solidity compiler version is not fixed and
consistent across the project

Language
Specific

Low Mitigated

BZL-2 FlashBack.maximumStakeDuration does
not count for leap year

Logical Informational Acknowledged

BZL-3 FlashBack::constructor() does not
validate _stakingTokenAddress

Logical Low Acknowledged

BZL-4 FlashBack::stake() should use the defined
state variable instead of magic value literal
address

Logical Medium Acknowledged

BZL-5 FlashBack::unstake() does not check
transfer() return value

Logical Medium Fixed

BZL-6 FlashBack::setForfeitRewardAddress()
missing event

Code Style Informational Fixed

CONFIDENTIAL 10

17  
Total Issues

Informational
6

Low
6

Medium
5

 BlockzeroLabs Security Assessment

BZL-7 FlashBack::setRewardRate() missing
event

Code Style Informational Fixed

BZL-8 FlashProtocol::constructor() does not
validate input parameter address

Logical Low Acknowledged

BZL-9 FlashProtocol::registerStrategy()
does not validate input parameter address

Logical Informational Fixed

BZL-10 FlashToken::decimals() not set explicitly Logical Informational Acknowledged

BZL-11 UserIncentive::depositReward() does
not check transfer() return value

Logical Medium Acknowledged

BZL-12 UserIncentive::claimReward() does not
check transfer() return value

Logical Medium Acknowledged

BZL-13 FlashStrategyAAVEv2::constructor()
does not validate input parameter address

Logical Low Acknowledged

BZL-14 FlashStrategyAAVEv2 is unable to stop or
decrease AVVE lending pool approved amount

Logical Informational Acknowledged

BZL-15 FlashStrategyAAVEv2::withdrawYield()
ignoring AVVE lending pool withdraw returned
value

Logical Informational Fixed

BZL-16 FlashStrategyAAVEv2::withdrawPrincipa
l() ignoring AVVE lending pool withdraw
returned value

Logical Medium Fixed

BZL-17 FlashStrategyAAVEv2::getMaxStakeDurat
ion() comment typo

Code Style Informational Fixed

ID Name Category Severity Status

CONFIDENTIAL 11

 BlockzeroLabs Security Assessment

BZL-1: Solidity compiler version is not fixed and
consistent across the project

Code

Description
There are ^0.8.4 and >=0.8.4 solidity versions used in the contracts and the compiler version is
floating. Having non fixed compiler version is not the best practice.

Recommendation
Fix the compiler version to 0.8.4 or a preferred version.

Client Response
Client changed all the version pragma to ^0.8.4, meaning all the patch versions of 0.8.4 and higher
versions in the 0.8.x branch. Since the caret range is for non-breaking changes, this is better than
>=0.8.4 which can include breaking changes in the future. 

Category Severity Code Reference Status

Language Specific Low All contracts Mitigated

CONFIDENTIAL 12

2: pragma solidity ^0.8.4;

2: pragma solidity >=0.8.4;

 BlockzeroLabs Security Assessment

BZL-2: FlashBack.maximumStakeDuration does not
count for leap year

Code

Description
With leap year considered and averaged out in four years, maximumStakeDuration should be
365.25 x 24 x 60 x 60 = 31557600 seconds.

Recommendation
Consider if the leap year case is needed and modify the value accordingly.

Client Response
No change required.  

Category Severity Code Reference Status

Logical Informational contracts/FlashBack.sol:13 Acknowledged

CONFIDENTIAL 13

13: uint256 constant maximumStakeDuration = 31536000; // 365 days in seconds

 BlockzeroLabs Security Assessment

BZL-3: FlashBack::constructor() does not validate
_stakingTokenAddress

Code

Description
The input parameter _stakingTokenAddress can be zero address.

Recommendation
Add a require statement to validate _stakingTokenAddress != address(0).

Client Response
No change required - this is part of due diligence around deployment.  

Category Severity Code Reference Status

Logical Low contracts/FlashBack.sol:36 Acknowledged

CONFIDENTIAL 14

35: constructor(address _stakingTokenAddress) public {
36: stakingTokenAddress = _stakingTokenAddress;
37: }

 BlockzeroLabs Security Assessment

BZL-4: FlashBack::stake() should use the defined
state variable instead of magic value literal address

Code

Description
The two blacklisted addresses are already defined as state variables in the contract
FlashBack.forfeitRewardAddress and FlashProtocol.globalMintFeeRecipient. The
logic should reference them instead of using hardcode magic address. Besides good code style,
when forfeitRewardAddress and globalMintFeeRecipient get updated by the setter
functions, the checks will fail to pick up the new values. Also, the two error messages should be
distinct to differentiate each failure cause.

Recommendation
Reference the forfeitRewardAddress in the require. For globalMintFeeRecipient, either add
a setter in FlashBack to update the globalMintFeeRecipient in the contract or to get the
updated value from FlashProtocol every call with a higher gas cost. Update the revert error
messages.

Client Response
No change required, we have intentionally put these addresses there so it is clear to those reading that
these two addresses are blacklisted from participating in FlashBacks. This is really just for optics.

Category Severity Code Reference Status

Logical Medium contracts/FlashBack.sol:44,45 Acknowledged

CONFIDENTIAL 15

44: require(msg.sender != 0x5089722613C2cCEe071C39C59e9889641f435F15, "BLACKLISTED
ADDRESS");
45: require(msg.sender != 0x8603FfE7B00CCd759f28aBfE448454A24cFba581, "BLACKLISTED
ADDRESS");

 BlockzeroLabs Security Assessment

BZL-5: FlashBack::unstake() does not check
transfer() return value

Code

Description
The ERC20 transfer() function has a return value, and in case of failure it returns false. The best
practice is to check the return value of the transfer() function and revert in case of failure.

Recommendation
Use SafeERC20 from OpenZeppelin by using SafeERC20 for IERC20C in the contract and
IERC20C(stakingTokenAddress).safeTransfer(address, amount) to use it.

Client Response
Fixed by using safeTransfer.

Category Severity Code Reference Status

Logical Medium contracts/FlashBack.sol:82,83,87 Fixed

CONFIDENTIAL 16

81: if (unstakedEarly) {
82: IERC20C(stakingTokenAddress).transfer(msg.sender, p.stakedAmount);
83: IERC20C(stakingTokenAddress).transfer(forfeitRewardAddress,
p.reservedReward);
84:
85: emit Unstaked(_stakeId, 0, p.reservedReward);
86: } else {
87: IERC20C(stakingTokenAddress).transfer(msg.sender, p.stakedAmount +
p.reservedReward);
88:
89: emit Unstaked(_stakeId, p.reservedReward, 0);
90: }

 BlockzeroLabs Security Assessment

BZL-6:
FlashBack::setForfeitRewardAddress() missing
event

Code

Description
The forfeitRewardAddress state is changed but there is no event emitted.

Recommendation
Emit an event

Client Response
Event added.  

Category Severity Code Reference Status

Code Style Informational contracts/FlashBack.sol:113 Fixed

CONFIDENTIAL 17

112: function setForfeitRewardAddress(address _forfeitRewardAddress) external onlyOwner {
113: forfeitRewardAddress = _forfeitRewardAddress;
114: }

 BlockzeroLabs Security Assessment

BZL-7: FlashBack::setRewardRate() missing event

Code

Description
The rewardRate state is changed but there is no event emitted.

Recommendation
Emit an event

Client Response
Event added.  

Category Severity Code Reference Status

Code Style Low contracts/FlashBack.sol:118 Fixed

CONFIDENTIAL 18

116: function setRewardRate(uint256 _rewardRate) external onlyOwner {
117: require(_rewardRate <= 63419583968, "INVALID REWARD RATE");
118: rewardRate = _rewardRate;
119: }

 BlockzeroLabs Security Assessment

BZL-8: FlashProtocol::constructor() does not
validate input parameter address

Code

Description
The input parameter _flashNFTAddress and _flashFTokenFactoryAddress can be zero
address.

Recommendation
Add a require statement to validate _flashNFTAddress and _flashFTokenFactoryAddress is
not address(0).

Client Response
No change required - this is part of due diligence around deployment.  

Category Severity Code Reference Status

Logical Low contracts/FlashProtocol.sol:63 Acknowledged

CONFIDENTIAL 19

63: constructor(address _flashNFTAddress, address _flashFTokenFactoryAddress) public {
64: flashNFTAddress = _flashNFTAddress;
65: flashFTokenFactoryAddress = _flashFTokenFactoryAddress;
66: }

 BlockzeroLabs Security Assessment

BZL-9: FlashProtocol::registerStrategy() does not
validate input parameter address

Code

Description
The input parameter _strategyAddress and _principalTokenAddress can be zero address.
And when _strategyAddress is zero, the subsequent require would default to zero and bypass the
check.

Recommendation
Add a require statement to validate _strategyAddress and _principalTokenAddress is not
address(0).

Client Response
Fixed by adding validation.  

Category Severity Code Reference Status

Logical Low contracts/FlashProtocol.sol:69,70 Fixed

CONFIDENTIAL 20

68: function registerStrategy(
69: address _strategyAddress,
70: address _principalTokenAddress,
71: string calldata _fTokenName,
72: string calldata _fTokenSymbol
73:) external {

 BlockzeroLabs Security Assessment

BZL-10: FlashToken::decimals() not set explicitly

Code

Description
Token’s decimals is not set explicitly. The default value of decimals is 18. To select a different value
for decimals you should overload it.

Recommendation
Please confirm if 18 is the desired decimals value.

Client Response
No change required, 18 decimals is expected.  

Category Severity Code Reference Status

Logical Informational contracts/FlashToken.sol:10 Acknowledged

CONFIDENTIAL 21

09: constructor() ERC20("Flashstake", "FLASH") ERC20Permit("Flashstake") {
10: _mint(msg.sender, 150000000 * 10**decimals());
11: }

 BlockzeroLabs Security Assessment

BZL-11: UserIncentive::depositReward() does not
check transfer() return value

Code

Description
The ERC20 transfer() function has a return value, and in case of failure it returns false. The best
practice is to check the return value of the transfer() function and revert in case of failure.

Recommendation
Use SafeERC20 from OpenZeppelin by using SafeERC20 for IERC20C in the contract and
IERC20C(rewardTokenAddress).safeTransfer(address, amount) to use it.

Client Response
No change required, UserIncentive contract will only be used with ERC-20 compliant tokens
(specifically Flash token).  

Category Severity Code Reference Status

Logical Medium contracts/UserIncentive.sol:36 Acknowledged

CONFIDENTIAL 22

35: require(block.timestamp > rewardLockoutTs, "LOCKOUT IN FORCE");
36: IERC20C(rewardTokenAddress).transfer(msg.sender, rewardTokenBalance);

 BlockzeroLabs Security Assessment

BZL-12: UserIncentive::claimReward() does not
check transfer() return value

Code

Description
The ERC20 transfer() function has a return value, and in case of failure it returns false. The best
practice is to check the return value of the transfer() function and revert in case of failure.

Recommendation
Use SafeERC20 from OpenZeppelin by using SafeERC20 for IERC20C in the contract and
IERC20C(rewardTokenAddress).safeTransfer(address, amount) to use it.

Client Response
No change required, UserIncentive contract will only be used with ERC-20 compliant tokens
(specifically Flash token).  

Category Severity Code Reference Status

Logical Medium contracts/UserIncentive.sol:86 Acknowledged

CONFIDENTIAL 23

85: // Transfer and update balance locally
86: IERC20C(rewardTokenAddress).transfer(_yieldTo, rewardAmount);
87: rewardTokenBalance = rewardTokenBalance - rewardAmount;

 BlockzeroLabs Security Assessment

BZL-13: FlashStrategyAAVEv2::constructor() does
not validate input parameter address

Code

Description
The input parameter address can be zero address.

Recommendation
Add a require statement to validate input parameters are not address(0).

Client Response
No change required - this is part of due diligence around deployment.  

Category Severity Code Reference Status

Logical Low contracts/strategies/
FlashStrategyAAVEv2.sol:37-40

Acknowledged

CONFIDENTIAL 24

31: constructor(
32: address _lendingPoolAddress,
33: address _principalTokenAddress,
34: address _interestBearingTokenAddress,
35: address _flashProtocolAddress
36:) public {
37: lendingPoolAddress = _lendingPoolAddress;
38: principalTokenAddress = _principalTokenAddress;
39: interestBearingTokenAddress = _interestBearingTokenAddress;
40: flashProtocolAddress = _flashProtocolAddress;
41:
42: increaseAllowance();
43: }

 BlockzeroLabs Security Assessment

BZL-14: FlashStrategyAAVEv2 is unable to stop or
decrease AVVE lending pool approved amount

Code

Description
While it is unlikely AAVE is compromised, it is crucial that the contract owner can decrease the
approved amount from an external contract allowance and have full control on the allowance.

Recommendation
Consider add a new function to decrease or stop the allowance with onlyOwner modifier.

Client Response
No change required - the risk is known but we favour decentralisation. Users will be made aware of
the inherit risk surrounding the protocol and its dependencies.  

Category Severity Code Reference Status

Logical Informational contracts/strategies/
FlashStrategyAAVEv2.sol:47

Acknowledged

CONFIDENTIAL 25

46: function increaseAllowance() public {
47: IERC20(principalTokenAddress).safeApprove(lendingPoolAddress, type(uint256).max);
48: }
49:

 BlockzeroLabs Security Assessment

BZL-15: FlashStrategyAAVEv2::withdrawYield()
ignoring AVVE lending pool withdraw returned value

Code

Description
ILendingPool::withdraw() returns the final amount withdrawn, and this could be different that
the input _tokenAmount.

Recommendation
Confirm in the case that the final yield withdrawn amount is different than requested, do you want to
revert the transaction.

Client Response
Addressed, added in a check.  

Category Severity Code Reference Status

Logical Informational contracts/strategies/FlashStrategyAAVEv2.sol:
62

Fixed

CONFIDENTIAL 26

60: function withdrawYield(uint256 _tokenAmount) private {
61: // Withdraw from AAVE
62: ILendingPool(lendingPoolAddress).withdraw(principalTokenAddress, _tokenAmount,
address(this));
63:
64: uint256 aTokenBalance =
IERC20(interestBearingTokenAddress).balanceOf(address(this));
65: require(aTokenBalance >= getPrincipalBalance(), "PRINCIPAL BALANCE INVALID");
66: }

 BlockzeroLabs Security Assessment

BZL-16:
FlashStrategyAAVEv2::withdrawPrincipal()
ignoring AVVE lending pool withdraw returned value

Code

Description
ILendingPool::withdraw() returns the final amount withdrawn, and this could be less than the
input _tokenAmount. When that happens, in the line 72 the msg.sender would receive more than
what is staked in AAVE.

However, we understand this function is guarded by onlyAuthorised modifier so the msg.sender
can only be strategy contract itself or flashProtocolAddress.

Recommendation
Confirm in the case that the final yield withdrawn amount is different than requested, do you want to
revert the transaction or use the actual withdrawn amount for the safeTransfer() call.

Client Response
Addressed, added in a check.  

Category Severity Code Reference Status

Logical Medium contracts/strategies/FlashStrategyAAVEv2.sol:
70

Fixed

CONFIDENTIAL 27

68: function withdrawPrincipal(uint256 _tokenAmount) external override onlyAuthorised {
69: // Withdraw from AAVE
70: ILendingPool(lendingPoolAddress).withdraw(principalTokenAddress, _tokenAmount,
address(this));
71:
72: IERC20(principalTokenAddress).safeTransfer(msg.sender, _tokenAmount);
73:
74: principalBalance = principalBalance - _tokenAmount;
75: }

 BlockzeroLabs Security Assessment

BZL-17:
FlashStrategyAAVEv2::getMaxStakeDuration()
 comment typo

Code

Description
63072000 seconds is 730 days (2 years), the comment says 720 days a typo.

Recommendation
Correct the typo to be 730 days.

Client Response
Addressed, that was a typo.  

Category Severity Code Reference Status

Code Style Informational Contracts/strategies/
FlashStrategyAAVEv2.sol:166

Fixed

CONFIDENTIAL 28

165: function getMaxStakeDuration() public pure override returns (uint256) {
166: return 63072000; // Static 720 days (2 years)
167: }

 BlockzeroLabs Security Assessment

Disclaimer
This report is subject to the terms and conditions (including without limitation, description of services,

confidentiality, disclaimer and limitation of liability) set forth in the Invoices, or the scope of services,

and terms and conditions provided to you (“Customer” or the “Company”) in connection with the

Invoice. This report provided in connection with the services set forth in the Invoices shall be used by

the Company only to the extent permitted under the terms and conditions set forth in the Invoice. This

report may not be transmitted, disclosed, referred to or relied upon by any person for any purposes,

nor may copies be delivered to any other person other than the Company, without Secure3’s prior

written consent in each instance.

This report is not an “endorsement” or “disapproval” of any particular project or team. This report is

not an indication of the economics or value of any “product” or “asset” created by any team or project

that contracts Secure3 to perform a security assessment. This report does not provide any warranty or

guarantee of free of bug of codes analyzed, nor do they provide any indication of the technologies,

business model or legal compliancy.

This report should not be used in any way to make decisions around investment or involvement with

any particular project. Instead, it represents an extensive assessing process intending to help our

customers increase the quality of their code and high-level consistency of implementation and

business model, while reducing the risk presented by cryptographic tokens and blockchain

technology.

Secure3’s position on the final decisions over blockchain technologies and corresponding associated

transactions is that each company and individual are responsible for their own due diligence and

continuous security.

The assessment services provided by Secure3 is subject to dependencies and under continuing

development. The assessment reports could include false positives, false negatives, and other

unpredictable results. The services may access, and depend upon, multiple layers of third-parties.

CONFIDENTIAL 29

	BZL-1: Solidity compiler version is not fixed and consistent across the project
	BZL-2: FlashBack.maximumStakeDuration does not count for leap year
	BZL-3: FlashBack::constructor() does not validate _stakingTokenAddress
	BZL-4: FlashBack::stake() should use the defined state variable instead of magic value literal address
	BZL-5: FlashBack::unstake() does not check transfer() return value
	BZL-6: FlashBack::setForfeitRewardAddress() missing event
	BZL-7: FlashBack::setRewardRate() missing event
	BZL-8: FlashProtocol::constructor() does not validate input parameter address
	BZL-9: FlashProtocol::registerStrategy() does not validate input parameter address
	BZL-10: FlashToken::decimals() not set explicitly
	BZL-11: UserIncentive::depositReward() does not check transfer() return value
	BZL-12: UserIncentive::claimReward() does not check transfer() return value
	BZL-13: FlashStrategyAAVEv2::constructor() does not validate input parameter address
	BZL-14: FlashStrategyAAVEv2 is unable to stop or decrease AVVE lending pool approved amount
	BZL-15: FlashStrategyAAVEv2::withdrawYield() ignoring AVVE lending pool withdraw returned value
	BZL-16: FlashStrategyAAVEv2::withdrawPrincipal() ignoring AVVE lending pool withdraw returned value
	BZL-17: FlashStrategyAAVEv2::getMaxStakeDuration() comment typo

